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Abstract 
Existing machine learning methods use orders of magnitude more energy than biological learning in the 
brain. Our project combines recent understanding of brain neuron chemistry and behavior with 
innovations in analog and mixed signal circuit design to create a new hardware platform that can run 
large-scale machine learning algorithms at a fraction of the cost of existing digital methods. This vision 
relies on two critical innovations: (1) a machine learning algorithm that that leverages biologically inspired 
principles to learn complex pattern-matching behavior without the use of backpropagation or a gradient 
calculation chain, (2) a physical computer chip that has been custom designed to implement this learning 
algorithm in analog hardware. Using existing external partnerships, we will manufacture a prototype of 
the proposed computer chip for testing, validation, and proof-of-concept.  

Summary of Plans for External Funding 
The National Science Foundation has several programs that support work in neuromorphic circuits for 
machine learning: Integrative Strategies for Understanding Neural and Cognitive Systems (NCS), Brain-
Inspired Dynamics for Engineering Energy-Efficient Circuits and Artificial Intelligence (BRAID), and 
Bioinspired Design Collaborations to Accelerate the Discovery-Translation Process (BioDesign). A 
preliminary proposal was submitted to the NSF BRAID program last year and received two ratings of 
“Very Good” with comments including “The integration of theoretical neuroscience and engineering is 
very strong” and “This is a well written proposal about a project striking a well thought out balance of 
theoretical neuroscience and circuit design and analysis”, but “the properties of the spiking neurons are 
not clear” and “It would be better to show the scalability of the proposed CMOS design”. Based on this 
feedback, we feel confident that the work will soon be mature enough to garner external support. 

We have begun organizing a multi-university collaboration in neuromorphic learning circuits for a 
proposal to the National Science Foundation Computer and Information Science and Engineering: Core 
Programs, Large Projects (CISE Large) program. The work described here will play a key role in that 
proposal. 
 

 



Project Narrative

1 Introduction
Emerging AI technologies like DALL-E, ChatGPT, diffusion networks and Bing’s new AI search offer

enormous potential benefits to society, but they also have a high computational cost, requiring billions of

transistors clocked at GHz rates to calculate the flow of signals through a single neural network. Every

generated image, chat response, language translation, or text rephrasing produced by any of the internet’s

5.6 billion users has a concrete financial and environmental cost. As an example, Strubell, Ganesh, and

McCallum estimate the carbon emmissions produced during the design and training of a single large-scale

transformer network to be roughly five times that produced by an average car over its entire lifespan [1].

The financial cost for the same model was estimated at $942,973–$3,201,722.

As intimidating as those numbers are, they describe only the first phase of a neural network’s lifespan.

Once a machine learning model has been trained, it may be called upon at will to generate images, create

chat responses, power search engines, or revise user-generated text. As of this writing, the popular image

generation network DALL-E 2 has over 1.5 million users generating an estimated 2 million images per

day [2]. GitHub Co-pilot is used by an estimated 1.2 million developers as part of their daily work [3], and

ChatGPT has more than 100 million users and 13 million daily visitors [4]. In short, our society is investing

billions of dollars per day into AI infrastructure, with corresponding energy and environmental impacts, and

the trend is strongly upward. As an inevitable corollary, this also means that many of the most impressive

AI technologies of the modern age will remain available only to the financially privileged, leaving much of

the world’s populace in digital ghettos.

Our research seeks to address this problem by designing a new kind of hardware that is custom-manufactured

to support machine learning at scale, but with only a fraction of the energy requirements. Rather than us-

ing digital hardware, in which signals are propagated as 0’s and 1’s, our proposed design will use custom

designed analog hardware. In this paradigm, the mathematical operations needed to power a neural net-

work are built directly onto a computer chip in the form of registers, wires, and capacitors, an approach that

requires orders of magnitude less energy than the digital neural networks currently being deployed.

Prior researchers have demonstrated both the energy efficiency of analog circuits as compared to digital

ones, as well as their suitedness for a machine learning variants known as spiking neural networks [5–8],

but there is a catch: The backpropagation update algorithm – which is widely relied upon for machine learn-

ing architectures and forms the computational backbone of AI models like GPT-3, ChatGPT, DALLE and

DALLE-2 – is too computationally intensive for implementation on a physical analog chip. Backpropaga-

tion requires a precise record of every calculation performed during a neural network’s forward pass so that

the weight parameters can be properly adjusted during the backward pass []. This is easily accomplished on

digital hardware, which relies on CPUs, GPUs, and memory registers to store intermediate loss gradients.

Analog hardware, in contrast, relies on mathematical operations that are built directly onto the physical. The

intermediate loss gradients required by the backpropagation algorithm are prohibitively complicated to be

constructed this way. In other words, the analog chip does not have enough space to store a record of past

calculations.

We therefore propose to design a new kind of learning algorithm: one that is able to update its weight pa-

rameters without requiring an unbroken gradient chain. We know that such a learning algorithm is possible,

because the human brain accomplishes comparable feats with far fewer operations and orders of magni-

tude less energy than current computing infrastructure, and the brain’s neurons do not keep a record of past

computations. Prior work by our research group has demonstrated that biological brain behaviors mediated

by modulatory neurotransmitters can be integrated into a spiking neural network architecture and is imple-

mentable on a physical chip [9]. Building on this work, we will leverage additional insights from recent

neurobiological discoveries in order to facilitate low-energy consumption chips that are custom-designed
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for machine learning. The resulting analog chip will differ from Intel’s Loihi 2 [10], BrainChip’s Akida

processor [11], and other recent advances in neuromorphic computing in that we use an analog rather than

digital hardware platform and we abandon the concept of backpropagation rather than seeking clever ap-

proximations of it. The concrete deliverables of this project will be:

1. A novel spiking neural network architecture inspired by mechanisms and modalities in bio-

logical brains

2. A unique weight update rule compatible with our architecture which does not rely on a

traditional loss gradient chain, thus making it suitable for deployment in analog computation

environments

3. A physical analog chip that will be custom manufactured with our neural network circuitry

4. Empirical results from a small-scale proof-of-concept evaluation demonstrating the chip’s

ability to learn meaningful tasks with low power consumption

2 Research Team
This work is based on synergies between the fields of neuroscience (Yorgason), machine learning (Fulda),

circuit design (Chiang), and numerical modeling and applications (Warnick).

Nancy Fulda (PI) specializes in deep learning, knowledge representation, neural network architectures,

and generative neural models. Fulda’s group will oversee the integration of traditional machine learning

methods with biologically motivated insights during the development of the proposed learning algorithm.

In particular, Fulda’s group will simulate and evaluate the performance of bio-inspired learning algorithms

prior to chip manufacture; explore novel network architectures, activation functions, and recurrence patterns

in the context of analog computing; and will design the machine learning evaluation framework that will be

used to validate the completed chip.

Shiuh-hua Wood Chiang (Co-PI) has extensive experience in CMOS circuit design with particular empha-

sis on analog/mixed-signal circuits for low-power, high-performance applications. His group has expertise

in designing custom chips for communications, sensors, and scientific instrumentations. Chiang’s group

will be responsible for the CMOS implementation of the bio-inspired AI chip including schematic design,

circuit simulations, layout, chip measurement, and PCB design.

Jordan Yorgason (Co-PI) has background training in circuit function and ionotropic and metabotropic

receptor pharmacology, with methodological expertise in performing and interpreting physiology, electro-

chemistry and microscopy experiments. Dr. Yorgason’s research has an emphasis in mesolimbic dopamine

circuitry, pharmacology of drugs of abuse and behavioral neuroscience, with over 37 peer reviewed publica-

tions in these topics. The Yorgason lab will provide this research group with insight into biological learning

and transmission modalities at the cellular and sub-cellular level.

Karl F. Warnick (Co-PI) has expertise in numerical simulation methods for circuits and systems, which is

critical to bridging the gap between traditional ML algorithms and analog circuit design. Warnick’s group

will hybridize time-domain circuit solvers with ML training to design and train analog circuit networks with

the desired functionality, and will oversee the validation of the manufactured chip.

3 Methodology
The purpose of our research is to enable energy-efficient computing for deep spiking neural networks that

can be deployed at scale in commercial settings. In pursuit of this goal, we are exploring a radical shift in the

hardware used for network learning and neural network inference. The proposed research requires a novel

machine learning algorithm paired with analog hardware that has been custom manufactured to implement

it. Past work from our research group demonstrates that we have the requisite skills to achieve this objective.
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Preliminary work has been completed on both the learning algorithm and the hardware implementation, as

described below.

3.1 The Learning Algorithm

Prior work by this research group was based on the biological discovery of modulatory neurotransmitters

and the application of similar principles in machine learning contexts [9]. That research shows that the

biological principle of neuromodulatory activities can be used as a machine learning mechanism and that

is implementable on low-energy consumption chips. However, the research also exposed issues faced by

modern-day neuromorphic hardware, including its dependency on the backpropagation algorithm and an

unbroken gradient chain. The current project tackles this limitation head-on, seeking to replace the back-

propagation algorithm with a biologically inspired alternative.

Neurotransmitters such as dopamine, glutamate, seratonin, histamine, norepinephrine and many others

have unique modulatory effects on neuron behavior [12–14]. Because there are many possible neurotrans-

mitters, biological neurons utilize different types of signals to mediate information flow [15]. In particular,

Retrograde Signals (RS) [16] involve the release from the postsynaptic neuron of a neurotransmitter which

diffuses to the presynaptic bouton, thus impacting the transmission behavior of future incoming signals.

As a thought experiment, and an introduction to our proposed learning algorithm, let us call signals that

calculate the mathematical behavior of a neural network ”forward signals” (FS). In biological brains, there

is a known type of RS which travels explicitly along with traces left by forward signals, allowing the RS

to precisely update the synaptic weight of neurons which participated in decision-making without knowing

the precise sequence of calculations performed during the decision-making process. Moreover, depending

on the type of RS, retrograde and forward signals can overwrite each other when they meet along biological

neural pathways [15]. Critically, the simultaneous transmission of both RS and FS through a given neuron

does not increase the neuron’s firing frequency beyond that which would have been achieved via the forward

signal alone. Thus, the existence of a retrograde signal does not explicitly increase the energy consumption

of network activities.

We model our proposed learning algorithm on the biological principle of mixed signal learning with

both RS and FS. In our algorithm, forward signals are given to input layers, and retrograde signals are given

to output layers. The former propagates in the direction of the output layer while the latter propagates to the

direction to input layers. Each neuron utilizes a set of rules to determine its state upon receiving FS or RS.

When FS and RS met in a single neuron, the state of the neuron changes, triggering a synaptic adjustment

event. A neuron in the FS state can only fire FS signals, and one in the RS state can only fire RS signals. We

use the Leaky-integration-and-fire (LIF) [17] neuron model because it closely resembles biological neurons

and has an established theoretical relationship to the commonly-used RELU activation function in artificial

neural networks [18]. To implement RS we add a binary value to each neuron which tracks traces left by

FS; a binary value indicating the state of the neuron; and a continuous value to track RS signals. The neuron

behaves as follows:

Oit = H(vit) ∗ I (1)

H(vit) =

{
1, if (vt ≥ θ)&G(it)

0, otherwise
(2)

vit = (

n∑
j=0

Ojt ∗ wij) + d ∗ vit−1 ∗ (1−H(vit−1)) (3)

where vit is the voltage (membrane potential) of the neuron i at time t. Ojt is the output of neuron j
through Heaviside Step function H . I represents the existence of output current. θ is the activation threshold
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of neurons. wij is the synaptic weight between two neurons. d is the ratio of voltage remaining from the

previous time step t − 1. G() is a gating function that prevents negative RS signals from traveling through

neurons without traces of FS. G() can be denoted as:

G(it) =

{
1, if (fit&rit < 0) or rit > 0

0, otherwise
(4)

fit =

{
1, if i received FS since last firing

0, otherwise
(5)

fit is a binary value indicating that neuron i received the FS signal since last firing. Using fit ensures

that gating function G will allow negative accumulated RS rit only when an FS trace was detected. The

state of neuron j at any given time t can be calculated as:

sjt =

⎧⎪⎨
⎪⎩
1, if (rit > 0 & fit == 0) or (rit) < 0

sjt−1 , if no signal was received on t− 1

0, otherwise

(6)

A value of sjt = 1 indicates a retrograde (RS) state. A value of 1 indicates the FS state. The change of

the synaptic weight is computed as:

Δw =

⎧⎪⎨
⎪⎩
−1 ∗ c, if sjt ! = sjt−1 & rit < 0

c, if sjt ! = sjt−1 & rit > 0

0, otherwise

(7)

The synaptic weight change happens only when the neuron state sjt changes. The direction of change

depends on the accumulated value of rit . Therefore, the RS value determines how the weight is updated.

3.2 The Physical Chip

This research group has experience designing and fabricating analog spiking neurons. We previously pub-

lished work on a novel analog spiking neuron that implemented a brain-dopamine-inspired learning algo-

rithm [9]. That neuron design consumed an average of around 1.4pJ of energy per computation, which is

many orders of magnitude smaller than today’s power-hungry backpropagation-based neurons.

Within the past few months, our group has designed a second version of this neuron. This updated design

includes more advanced features including time-domain computing, more weight storage, and a more area

efficient synapse circuit. This design went beyond a single neuron, and includes a 3x4 neuron array to show

that we can perform basic learning tasks on our hardware. It achieves a best-case power consumption only

153fJ of energy per computation. The full chip layout is shown in figure 1. In April, we will receive the

completed chip from our chip manufacturing partner TSMC, and will begin testing. Because of the limited

number of neurons on our chip, we will be learning tasks with only few internal features such as the XOR

task. Once we prove our algorithm and hardware work, we will design a larger, more computationally

powerful chip.

Building on the success of these neuron designs, we will add new features to make our next chip fully

compatible with the novel learning algorithm proposed in section 3.1. Digital memory and logic, which will

augment the core analog design of the chip, can easily remember which neurons fired during a network’s

forward pass and whether a neuron has received a FS since its last firing. We will modify the synapse to

receive signals in both the forward and reverse direction.

The remaining elements of the learning algorithm can be realized with a modular computing block

between each neuron. Since the learning algorithm updates the synapse weights based on very localized
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Figure 1: Layout of time-domain neural network chip. The full chip occupies only 561 x 561 microns.

Figure 2: Block diagram of the proposed hardware design implementing the novel learning algorithm pre-

sented in this proposal.

parameters, there is no need for complex signal routing hardware. Furthermore, all the computing circuitry

can be physically located near the neurons, greatly reducing signal wire length and therefore power con-

sumption and area. This approach to on-chip learning is a big improvement on existing architectures, which

completely separate the neuron circuitry from the digital learning circuitry and require complicated signal

routing hardware and algorithms. A block diagram of the proposed chip is shown in figure 2.

After the chip has been manufactured, we will evaluate its performance in the context of audio sig-

nal processing, and will compare not only energy consumption, but also sample complexity, convergence

rate, and final performance accuracy between our manufactured chip and a comparable machine learning

architecture implemented on traditional hardware. We hope that the results will provide a valuable proof of

concept and a springboard toward external funding from agencies such as NSF, DOE, and other entities.
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Budget and Budget Narrative

Year 1:

Student salaries: $15,000

Supplies and fabrication: $5,000

Total: $20,000

Year 2:

Student salaries: $15,000

Supplies and fabrication: $5,000

Total: $20,000

Budget narrative
We are requesting funding for 1 graduate student working at 50% capacity over two years ($15,000 per year).

The funds will support research assistance with algorithm design, circuit layour, and testing and validation.

Additionally, we are requesting $5000 per year in supplies and fabrication cost to support the manufacturing

of multiple chip prototypes.
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4 Plans for external funding
Our work fits well with these programs, for which we will prepare proposals and apply during the next year

of the project period:

Grant Program Description Amount Deadline
NSF NCS Integrative Strategies for

Understanding Neural and Cogni-

tive Systems

Seeks integrative, boundary-crossing

proposals that advance understanding

of neuroengineering and neuroscience.

Funds high-risk, high-payoff methods.

$500,000 TBD Dec.

2023/Feb.

2024

NSF EFRI-BRAID Brain-Inspired

Dynamics for Engineering Energy-

Efficient Circuits and Artificial In-

telligence

Invites proposals from diverse teams of

engineering-led researchers that will en-

able the broad yet ethical deployment of

novel engineered learning systems. The

inclusion of theoretical neuroscience ex-

pertise on each team is mandatory.

$2,000,000

across 4 years

TBD Oct.

2023/Feb.

2024

NSF BioDesign Bioinspired De-

sign Collaborations to Accelerate

the Discovery-Translation Process

Successful proposals will couple strong

grounding in biology and engineering

design with a plan for how the founda-

tional and use-inspired research can be

extended toward prototype development

which, in the longer term, aims to solve a

specific societal or economic challenge.

Not yet dis-

closed

TBD

NSF CISE Computer and Informa-

tion Science and Engineering: Core

Programs, Large Projects (CISE

Medium and Large)

Invites proposals on bold new ideas tack-

ling ambitious and fundamental research

problems. Large projects must be com-

prehensive and well-integrated, tackling

ambitious computer and information sci-

ence and engineering problems that are

well suited to a large-scale, integrated,

collaborative project.

$1,200,000 -

$5,000,000

over 4-5 years

Sept 30, 2024

The last of the above proposals is already underway. We have begun organizing a multi-university col-

laboration in neuromorphic learning circuits with the intent to submit a proposal to the National Science

Foundation Computer and Information Science and Engineering: Core Programs, Large Projects (CISE

Large) program. However, without substantive initial results and a demonstrable track record in the field,

the funding effort is less likely to be successful.
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Effective 10/04/2021 NSF CURRENT AND PENDING SUPPORT OMB-3145-0058 

*PI/co-PI/Senior Personnel Name:

*Required fields  

Note: NSF has provided 15 project/proposal and 10 in-kind contribution entries for users to 
populate. Please leave any unused entries blank. 

Project/Proposal Section: 

Current and Pending Support includes all resources made available to an individual in 
support of and/or related to all of his/her research efforts, regardless of whether or not they 
have monetary value.     Information must be provided about all current and pending 
support, including this project, for ongoing projects, and for any proposals currently under 
consideration from whatever source, irrespective of whether such support is provided 
through the proposing organization or is provided directly to the individual. This 
includes, for example, Federal, State, local, foreign, public or private 
foundations, non-profit organizations, industrial or other commercial organizations, 
or internal funds allocated toward specific projects. Concurrent submission of a 
proposal to other organizations will not prejudice its review by NSF, if disclosed.

[1]

[2]

[1] If the time commitment or dollar value is not readily ascertainable, reasonable estimates
should be provided.
[2] The Biological Sciences Directorate exception to this policy is delineated in PAPPG Chapter
II.D.2.
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Projects/Proposals 
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*Status of Support : Current Pending Submission Planned Transfer of Support 
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3. 

 Year (YYYY) Person Months (##.##) 
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5. 

   

*Overall Objectives :

*Statement of
Potential Overlap :
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Current and Pending Support  
Karl F. Warnick  
 
Current 
 
“ALPACA: Advanced Cryogenic L-band Phased Array Camera for the Arecibo Radio Telescope,” 
National Science Foundation, Co-PI, 6/2018 to 5/2023, $5,820,529. Calendar: 0.1  
 
“Collaborative Research: SWIFT: LARGE: Spectrum Sharing Via Interference-resilient Passive 
Receivers and Passive-aware Active Services,” National Science Foundation, Co-PI, 8/2020 to 
8/2023, $333,267. Calendar: 0.06 
 
“Steerable, Directional Antennas to Increase Small Mobile Platform Communication Range,” 
Office of Naval Research ImSAR LLC STTR Phase I Subcontract, PI, 6/2022 to 7/2023, $56,000. 
Calendar: 0.06. 
 
Pending 
 
“Modeling, Detection and Mitigation of Adverse Weather affecting Urban Air Flight,” NASA ULI, 
Co-PI, 6/2023 to 5/2026, $601,512, Calendar: 0.1. 



Jordan Thomas Yorgason



: Neuroimmune mechanisms of alcohol reward

NIAAA

Brigham Young University 

06/2023

05/2028

1,861,873

2023 1.00

2024 1.00

2025 1.00

2026 1.00

2027 1.00

Examine the interactions between the peripheral immune system and 
mesolimbic circuitry.

None



Collaborative research between NOORDA College of Medicine and 
Brigham Young University

Noorda College of Medicine

Brigham Young University

06/2023

05/2025

108,000

2023 0.25

2024 0.25

2025 0.25

This funding is for maintaining laboratory animal research in connection 
with existing and future research projects alongside Noorda College of 
Medicine located near BYU. Current projects are investigating effects of 
opioids and alcohol on anxiety related neural circuitry.

None
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	name: Shiuh-hua Wood Chiang
	position_title_and_inst: Associate Professor, Brigham Young University
	institution: University of Waterloo

University of California, Irvine
University of California, Los Angeles
University of California, Los Angeles
	location: Waterloo, Canada
Irvine, CA

Los Angeles

Los Angeles
	major_area_of_study: Computer Engineering

Electrical Engineering

Electrical Engineering

Electrical Engineering

	degree: B.S.

M.S.

Ph.D.

Postdoc
	year: 2007

2009

2013

2013
	appointmentsYears: 2020-present
2020-present
2021-present
2019-2021
2017-present
2017-2019
2016-2020
2014-2020
2013-2014
	appointments: Associate Professor, Brigham Young University, Provo, UT
Visiting Associate Professor, National Chiao Tung University, Taiwan
Chapter Treasurer, IEEE Solid-State Circuits Society Utah Chapter
Chapter Chair, IEEE Solid-State Circuits Society Utah Chapter
Editorial Review Board Member, IEEE Solid-State Circuits Letters
Chapter Vice-Chair, IEEE Solid-State Circuits Society Utah Chapter
Visiting Assistant Professor, National Chiao Tung University, Taiwan
Assistant Professor, Brigham Young University, Provo, UT
Senior Engineer, Qualcomm, Irvine, CA
	products: Eric Swindlehurst, Hunter Jensen, Alexander Petrie, Yixin Song, Yen-Cheng Kuan, Yong Qu, Mau-Chung Frank Chang, Jieh-Tsorng Wu, and Shiuh-hua Wood Chiang, “An 8-bit 10-GHz 21-mW time-interleaved SAR ADC with grouped DAC capacitors and dual-path bootstrapped switch,” IEEE Journal of Solid-State Circuits (JSSC), vol. 56, no. 8, pp 2347-2359, Aug. 2021.

Khalil Gammoh, Cameron Peterson, David Penry, and Shiuh-hua Wood Chiang, “Linearity theory of stochastic phase-interpolation time-to-digital converter,” IEEE Transactions on Circuits and Systems I (TCAS-I), vol. 67, no. 12, pp. 4348-4359, Dec. 2020.

Khalil Gammoh, Cameron Peterson, David Penry, and Shiuh-hua Wood Chiang, “Linearity theory of stochastic phase-interpolation time-to-digital converter,” IEEE Transactions on Circuits and Systems I (TCAS-I), vol. 67, no. 12, pp. 4348-4359, Dec. 2020.

Devon Janke, Andrew Monk, Eric Swindlehurst, Kent Layton, and Shiuh-hua Wood Chiang, “A 9-Bit 10-MHz 28-µW SAR ADC using tapered bit periods and a partially interdigitated DAC,” IEEE Transactions on Circuits and Systems II (TCAS-II), vol. 66, no. 2, pp. 187-191, Feb. 2019. 

Shiuh-hua Wood Chiang, Hyuk Sun, and Behzad Razavi, “A 10-bit 800-MHz 19-mW CMOS ADC,” IEEE Journal of Solid-State Circuits (JSSC), pp. 935-949, Apr. 2014.
	Pi_copi_name: Shiuh-Hua Wood Chiang
	Project_Proposal_Title_1: Continuous Variable Integrated Quantum Photonic
	Status_Of_Support_1: Off
	Proposal_Award_Number_1: 4000186524 
	Source_of_support_1: Department of Energy/ Oak Ridge National Laboratory
	Primary_Place_Of_Performance_1: Brigham Young University, Provo, UT 
	Proposal_Start_Date_1: 03/2021
	Proposal_End_Date_1: 07/2023
	Total_Awd_Amount_1: 400000
	ProposalYear_1_1: 2023
	Person_Months_1_1: 1
	ProposalYear_1_2: 
	Person_Months_1_2: 
	ProposalYear_1_3: 
	Person_Months_1_3: 
	ProposalYear_1_4: 
	Person_Months_1_4: 
	ProposalYear_1_5: 
	Person_Months_1_5: 
	Overall_Objectives_1: We seek to develop on-chip optical components and functionalities for
continuous variable-based quantum photonics devices, including quantum
random number generators (QRNG), quantum optical hybrids, and
chip-scale quantum tomography.
	Statement_of_Potential_Overlap_1: No Overlap
	Project_Proposal_Title_2: Diamond Detector Readout Electronics for X-Ray Ptychography
	Status_Of_Support_2: Current
	Proposal_Award_Number_2: CW26356
	Source_of_support_2: DOE / Los Alamos National Laboratory 
	Primary_Place_Of_Performance_2: Brigham Young University, Provo, UT
	Proposal_Start_Date_2: 08/2022
	Proposal_End_Date_2: 09/2024
	Total_Awd_Amount_2: 192987
	ProposalYear_2_1: 2023
	Person_Months_2_1: 1.25
	ProposalYear_2_2: 2024
	Person_Months_2_2: 1.00
	ProposalYear_2_3: 
	Person_Months_2_3: 
	ProposalYear_2_4: 
	Person_Months_2_4: 
	ProposalYear_2_5: 
	Person_Months_2_5: 
	Overall_Objectives_2: Design and implementation of read-out electronics for diamond detectors.
This includes development of readout electronics that can read out 64
channels for two scenarios. 
	Statement_of_Potential_Overlap_2: No overlap
	Project_Proposal_Title_3: LEAP HI: Engineering Smart Seeds-A Platform for High-Density Soil
Sensors 
	Status_Of_Support_3: 0
	Proposal_Award_Number_3: 
	Source_of_support_3: National Science Foundation
	Primary_Place_Of_Performance_3: Brigham Young University, Provo, UT
	Proposal_Start_Date_3: 04/2023
	Proposal_End_Date_3: 03/2028
	Total_Awd_Amount_3: 1999969
	ProposalYear_3_1: 2023
	Person_Months_3_1: .5
	ProposalYear_3_2: 2024
	Person_Months_3_2: .5
	ProposalYear_3_3: 2025
	Person_Months_3_3: .5
	ProposalYear_3_4: 2026
	Person_Months_3_4: .5
	ProposalYear_3_5: 2027
	Person_Months_3_5: .5
	Overall_Objectives_3: The long-term goal of this project is to strengthen America’s prosperity and
health by advancing precision agriculture through improved estimates of
soil conditions to make better agricultural decisions. 
	Statement_of_Potential_Overlap_3: None
	Project_Proposal_Title_4: ACED Fab: AI-Enabled Highly Digital Receiver for Wireless
Communications

	Status_Of_Support_4: 0
	Proposal_Award_Number_4: 
	Source_of_support_4: National Science Foundation
	Primary_Place_Of_Performance_4: Brigham Young University, Provo, UT
	Proposal_Start_Date_4: 09/2023
	Proposal_End_Date_4: 08/2026
	Total_Awd_Amount_4: 612782
	ProposalYear_4_1: 2023
	Person_Months_4_1: 1
	ProposalYear_4_2: 2024
	Person_Months_4_2: 1
	ProposalYear_4_3: 2025
	Person_Months_4_3: 1
	ProposalYear_4_4: 
	Person_Months_4_4: 
	ProposalYear_4_5: 
	Person_Months_4_5: 
	Overall_Objectives_4: We propose to realize a highly digital wireless receiver that can benefit
directly from CMOS scaling and use AI techniques to improve the receiver
performance.
	Statement_of_Potential_Overlap_4: This proposal.
	Project_Proposal_Title_5: RFI Robust CMOS Back-End Spectrometer Processors

	Status_Of_Support_5: 0
	Proposal_Award_Number_5: 
	Source_of_support_5: NASA/Jet Propulsion Lab 
	Primary_Place_Of_Performance_5: Brigham Young University, Provo, UT
	Proposal_Start_Date_5: 07/2023
	Proposal_End_Date_5: 06/2026
	Total_Awd_Amount_5: 450000
	ProposalYear_5_1: 2023
	Person_Months_5_1: 1
	ProposalYear_5_2: 2024
	Person_Months_5_2: 1
	ProposalYear_5_3: 2025
	Person_Months_5_3: 1
	ProposalYear_5_4: 
	Person_Months_5_4: 
	ProposalYear_5_5: 
	Person_Months_5_5: 
	Overall_Objectives_5: This effort will develop RFI Robust CMOS system-on-chip back-end
spectrometer processors which will further improve a spectrometer
processor developed under an FY17 APRA project to provide robustness to
in-band terrestrial and other spaceborne signals that cause a corruption of
spectral data.

	Statement_of_Potential_Overlap_5: Similar ADC core circuit will be used in this work.


